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ABSTRAcr 

Tbe parameter of tb bUlomial dlatt1but1on are the C<llltant probabUity 
from trial to trial, and the number of triale. Ill aamplln& trom a tdnomiiiiLt 

• tbe QUIDber 0 triale la UIUAUJ mO\"IIl. Here ... , ... Ide emmat••r 1 

oblerveddata, of tbecoa.antprot..bWty&Dd (becau1ett iealao unlalown1 
DUmber of ttlale. t ) 
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I.   INTRODUCTION 

The standard binomial sampling problem involves repeating an experiment 
m  times and counting the number of successes.   If the random variable 
representing the number of successes is X,   then when we assume X has a 
binomial distribution we are saying 

where  q = 1 - p and  x may take the values 0, 1, 2, ...,m.   Here PJXr 

stands for the distribution function of X or the probability that  X takes a 
particular value.   From the observed number of successes in  m trials, we 
are interested in obtaining an estimate of the unknown probability,  p,  assumed 
to be constant from trial to trial.   The well known answer to this estimation 
problem is to estimate p  by 

m 

where  s  is the number of successes in m trials.  This estimate has been 
shown to have the desirable properties of unbiasedness, and minimum variance. 
The binomial sampling problem discussed in this paper is different in that in 
addition to estimating p,   we also need an estimate of the number of trials. 

H.   THE PROBLEM 

During a search we assume that there are a fixed but unknown number of 
objects,   m,  available to be detected. We assume that the probability of 
detecting en object is an unknown constant p.  We repeat the search k times. 
All objects detected in the first starch are tagged in some manner so that 
during the second search all new detections will be recognized and tagged.   This 
is repeated for all  k  searches.  We record after each search only the new 
detections made during that search.  We then have k  random variables 

d., j = 1,   2 k 

where d  is the number of new detections made during the j-th search.  We want 

to estimate p and  m  from the observed values of d . 

III.   RESULTS 

The »«arch problem given above descMbes sampling from a binomial 
ptvulation.  We easily see that the distribution of d. in given tiy 

, d,      m - d, m! 1 1 
^•^(m-^V p 



BSff         I.1JIJIW,P!WH?,™,!IIB[L.,.!IH ..."l".,.1 .   ." .tWUi.. .1 

The distribution of cL  given the value of d.   is then seen to be 

(m - dp! dj    m - dj - d2 

In general, then, the distribution of d.  given the d,, d«, ...d. _ . is 

(m - d, -d« -.. .-d. _ ,)!      d.    m - d. - d«-... -d. 
P(dj|dr d2 dj-l)= d Km-dj-c^-./.-d)! p     \ r (1) 

From the above, it follows that the loint density of all the d., j = 1 k 
the product of all die conditional densities given above, is ^ 

P(dr dj, 

where 

, v ml  S  k(m - S) +T - S 
V     d1!d2!...dk!(m-d1-d2...dk)!p  ^ 

(2) 

k 

s-2. d 
j 

The joint characteristic function of the d. is the eipected value 

E 
^[djl^djtj^.^C^^]. 
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and is 

Z  L'Z   djId^.^d^Cm-d^d^...-^)! (Pe11) 

'1 u2   uk 

v      /-    V.  2r     ^     k(m-S)+T-S X     (pe      y.-Ape     ;   q 

Performing the summations gives 

it. it 
{tvt2 ^(pe^+pqe^+.-.+pq e       +qy 

(3) 

Now the characteristic function of a binomial random variable defined by the 
parameters N,   P  (N trials,   P constant probability from trial to trial) 

is 
cp(T) = V^Q 

,N 
(4) 

If in (3) we set all the t's equal to zero except t.,   we see that 
it. 

T(0. 0 t., 0, 0 0)=(p+pq+... + PqJ'2+Pqi'le 

, vm it. 
k-1^ '   '   J-l    J pqJ +...+ pq      "Kl > %Pq + (l-pqJ      ) j " 1^ 

m 

J 

By analogy with (4) we then have that the distribution of the individual  d   Is 

(5) m! (DaJ        ,   J   1 -pqJ      y 

By setting in (3) all the  tj equal to t we find 

+ nq +... + pqk *   '    e * + q (t, t o •    p+ pq 

O'Vy^ 
m 

v 

-^' ■—   '-^-j 
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and so again by analogy with (4) we see that the distribution of S = Z d. is given 

* S m-S ' 

VSKm-S)!    C'-q")  tf; • (6) 
From (2) we may find the maximum likelihood estimate of p  by 

differentiating log  P(d,, d2»«"»d.) with respect to p and finding the value 

of p which makes this derivative equal to zero.   This leads to 

A.. S 
p " k(m - S) + T     * (7) 

Again starting with (2) it is possible to show that S is sufficient for m. 
This follows from the fact that (2) may be rewritten as 

P(d1 dk) = P(S, m) ?{xv x2 \. \> <8) 

S! (m - S)! 
m' Cl-,k)(qk) .PCX, x,..) 

where 

u v_  S! pS 

Wxv ."\. J- Xj!...^. JUS-XJ, -...Xj^. j)! (1 .   If 

k-1 
X q   (k - 1) S +^  Ü - W^ 

j = l 
and P (S, m) is the same as Pm(S) defined in (6). 

The first factor on the right side of (8) is a density as was already seen in 
(6)    The second factor is also a density as seen from 



l-q 

k-1 

,.    - cl (k-l)S+l  (j-k)x. 
Y   \    \ S!  g    i j 

X       L   L   L x^...^^! (S-Xj-...-^)! 
Xl X2 ^ - 1 

i-q 4 k-i 

in which the sum on the left is taken over-all (x. x.,) such that )     x. = S   . 

j=l     J 

The second factor on the right in (8) comes from the transformation 

xl=dl 
x2=d2 

Vl'Vl 
S = d. + d^"*-. • •+dt 

applied to (2).   The factorization in (8) means that  S is sufficient for  m.   Now 
we would like to have a function of S as an estimate of m which is unbiased and 
unique.  We want to use a result which says that if a function of a sufficient 
s atistic is both unbiased and unique, it is the best statistic for estimation in the 
sense of having minimum variance.   We propose as this function of S the quantity 

f(S) »|- (9) 

where P = 1 - q 

or 

Now we want   f(S)    to be unbiased for all  m.   This means 

E[f(S)    =m, for all  m (10) 

m 
J  f(S)Pm(S) » m for all m. (11) 

SH3 

^^ 



where  P(S)  is defined in (6). 

We want to prove that  f(S) given in (9) is unique.   Suppose S ^ 0.  We take 
m = 0 and in (11) we have 

0 
^f(0)Po(S)»0 

SH) 

or 

f(0)-0 

Suppose S ■ J..   We take  m   =1  and in (11) we have 

1 
^f(S)Pl(S)- 1. 

S-0 

Now   t(0) is already 0 and we find 

«DPjd) - I 

fCD^-P-l 

Suppose S » 2.   We take  m « 2  and require 
2 
^f(S)P2(S)-2 

S-0 

We already have f(0) - 0. f(l) --£-   .   Hence we 

0 . H-y .   TTJT- PQ ^ f(2) . P2 - 2 

find 

or 

Wj- ' 



By induction it follows that 

f(S) » |- , 

for !»uppo»t (9) is correct for  S • r.   W« then htve from (11) for  S « r M 
ami taking   m * r + 1 

r 

If ^l1'  ^ «r + !) Pr+1 <r+1) » ^ : or 
i-O 

(r ^ 1) (I - P1) -»■ xvr + 1) P**1 = r + I or 

4.V.I   »0 

f(r^l)*^   • 

Hence 1.1.- estimate given in (9) Is unique; sir.r« K is sufficient and unhiasoJ 
it ha» mlnumnß variance.   We rewr \e (9) as 

«•-^-r-- (12) 
l-q* 

rhm estimate o' m (12).   together wUh 

^ ■ TOW- <7) 

nuy N- IV.lVed simultaneously for in  and^. 

7 
(REVERSE BLANK) 


